There is growing interest in being able to run neural networks on sensors, wearables and internet-ofthings (IoT) devices. However, the computational demands of neural networks make them difficult to deploy on resource-constrained edge devices. To meet this need, our work introduces a new recurrent unit architecture that is specifically adapted for on-device low power acoustic event detection (AED). The proposed architecture is based on the gated recurrent unit (GRU) but features optimizations that make it implementable on ultra-low power micro-controllers such as the Arm Cortex M0+. Our new architecture, the Embedded Gated Recurrent Unit (eGRU) is demonstrated to be highly efficient and suitable for short-duration AED and keyword spotting tasks. A single eGRU cell is 60× faster and 10× smaller than a GRU cell. Despite its optimizations, eGRU compares well with GRU across tasks of varying complexities. The practicality of eGRU is investigated in a wearable acoustic event detection application. An eGRU model is implemented and tested on the Arm Cortex M0-based Atmel ATSAMD21E18 processor. The Arm M0+ implementation of the eGRU model compares favorably with a full precision GRU that is running on a workstation. The embedded eGRU model achieves a classification accuracy 95.3%, which is only 2% less than the full precision GRU.
Direct link to paper

Related Publications

Deep Neural Networks For Identifying Cough Sounds
Justice Amoh, Kofi Odame
In this paper, we consider two different approaches of using deep neural networks for cough detection. The cough detection task is cast as a visual recognition problem and as a sequence-to-sequence labeling problem.

Our Supporters